97 research outputs found

    Properties of a Dilute Bose Gas near a Feshbach Resonance

    Full text link
    In this paper, properties of a homogeneous Bose gas with a Feshbach resonance are studied in the dilute region at zero temperature. The stationary state contains condensations of atoms and molecules. The ratio of the molecule density to the atom density is πna3\pi na^3. There are two types of excitations, molecular excitations and atomic excitations. Atomic excitations are gapless, consistent with the traditional theory of a dilute Bose gas. The molecular excitation energy is finite in the long wavelength limit as observed in recent experiments on 85^{85}Rb. In addition, the decay process of the condensate is studied. The coefficient of the three-body recombination rate is about 140 times larger than that of a Bose gas without a Feshbach resonance, in reasonably good agreement with the experiment on 23^{23}Na.Comment: 11 pages, 1 figure, comparison between the calculated three-body recombination rate and the experimental data for Na system has been adde

    Role of quantum statistics in the photoassociation of Bose-Einstein condensates

    Get PDF
    We show that the photoassociation of an atomic Bose-Einstein condensate to form condensed molecules is a chemical process which not only does not obey the Arrhenius rules for chemical reactions, but that it can also depend on the quantum statistics of the reactants. Comparing the predictions of a truncated Wigner representation for different initial quantum states, we find that, even when the quantum prediction for an initial coherent state is close to the Gross-Pitaevskii prediction, other quantum states may result in very different dynamics

    Detector Description and Performance for the First Coincidence Observations between LIGO and GEO

    Get PDF
    For 17 days in August and September 2002, the LIGO and GEO interferometer gravitational wave detectors were operated in coincidence to produce their first data for scientific analysis. Although the detectors were still far from their design sensitivity levels, the data can be used to place better upper limits on the flux of gravitational waves incident on the earth than previous direct measurements. This paper describes the instruments and the data in some detail, as a companion to analysis papers based on the first data.Comment: 41 pages, 9 figures 17 Sept 03: author list amended, minor editorial change

    Analysis of LIGO data for gravitational waves from binary neutron stars

    Get PDF
    We report on a search for gravitational waves from coalescing compact binary systems in the Milky Way and the Magellanic Clouds. The analysis uses data taken by two of the three LIGO interferometers during the first LIGO science run and illustrates a method of setting upper limits on inspiral event rates using interferometer data. The analysis pipeline is described with particular attention to data selection and coincidence between the two interferometers. We establish an observational upper limit of R<\mathcal{R}<1.7 \times 10^{2}peryearperMilkyWayEquivalentGalaxy(MWEG),with90coalescencerateofbinarysystemsinwhicheachcomponenthasamassintherange13 per year per Milky Way Equivalent Galaxy (MWEG), with 90% confidence, on the coalescence rate of binary systems in which each component has a mass in the range 1--3 M_\odot$.Comment: 17 pages, 9 figure

    Narrative Exposure Therapy for Posttraumatic Stress Disorder associated with repeated interpersonal trauma in patients with Severe Mental Illness: a mixed methods design

    Get PDF
    Background: In the Netherlands, most patients with severe mental illness (SMI) receive flexible assertive community treatment (FACT) provided by multidisciplinary community mental health teams. SMI patients with comorbid posttraumatic stress disorder (PTSD) are sometimes offered evidence-based trauma-focused treatment like eye movement desensitization reprocessing or prolonged exposure. There is a large amount of evidence for the effectiveness of narrative exposure therapy (NET) within various vulnerable patient groups with repeated interpersonal trauma. Some FACT-teams provide NET for patients with comorbid PTSD, which is promising, but has not been specifically studied in SMI patients. Objectives: The primary aim is to evaluate NET in SMI patients with comorbid PTSD associated with repeated interpersonal trauma to get insight into whether (1) PTSD and dissociative symptoms changes and (2) changes occur in the present SMI symptoms, care needs, quality of life, global functioning, and care consumption. The second aim is to gain insight into patients’ experiences with NET and to identify influencing factors on treatment results. Methods: This study will have a mixed methods convergent design consisting of quantitative repeated measures and qualitative semi-structured in-depth interviews based on Grounded Theory. The study population will include adult SMI outpatients (n=25) with comorbid PTSD and receiving NET. The quantitative study parameters will be existence and severity of PTSD, dissociative, and SMI symptoms; care needs; quality of life; global functioning; and care consumption. In a longitudinal analysis, outcomes will be analyzed using mixed models to estimate the difference in means between baseline and repeated measurements. The qualitative study parameters will be experiences with NET and perceived factors for success or failure. Integration of quantitative and qualitative results will be focused on interpreting how qualitative results enhance the understanding of quantitative outcomes. Discussion: The results of this study will provide more insight into influencing factors for clinical changes in this population

    The current state-of-the-art of spinal cord imaging: methods.

    Get PDF
    A first-ever spinal cord imaging meeting was sponsored by the International Spinal Research Trust and the Wings for Life Foundation with the aim of identifying the current state-of-the-art of spinal cord imaging, the current greatest challenges, and greatest needs for future development. This meeting was attended by a small group of invited experts spanning all aspects of spinal cord imaging from basic research to clinical practice. The greatest current challenges for spinal cord imaging were identified as arising from the imaging environment itself; difficult imaging environment created by the bone surrounding the spinal canal, physiological motion of the cord and adjacent tissues, and small cross-sectional dimensions of the spinal cord, exacerbated by metallic implants often present in injured patients. Challenges were also identified as a result of a lack of "critical mass" of researchers taking on the development of spinal cord imaging, affecting both the rate of progress in the field, and the demand for equipment and software to manufacturers to produce the necessary tools. Here we define the current state-of-the-art of spinal cord imaging, discuss the underlying theory and challenges, and present the evidence for the current and potential power of these methods. In two review papers (part I and part II), we propose that the challenges can be overcome with advances in methods, improving availability and effectiveness of methods, and linking existing researchers to create the necessary scientific and clinical network to advance the rate of progress and impact of the research

    Velocity-space sensitivity of the time-of-flight neutron spectrometer at JET

    Get PDF
    The velocity-space sensitivities of fast-ion diagnostics are often described by so-called weight functions. Recently, we formulated weight functions showing the velocity-space sensitivity of the often dominant beam-target part of neutron energy spectra. These weight functions for neutron emission spectrometry (NES) are independent of the particular NES diagnostic. Here we apply these NES weight functions to the time-of-flight spectrometer TOFOR at JET. By taking the instrumental response function of TOFOR into account, we calculate time-of-flight NES weight functions that enable us to directly determine the velocity-space sensitivity of a given part of a measured time-of-flight spectrum from TOFOR

    Relationship of edge localized mode burst times with divertor flux loop signal phase in JET

    Get PDF
    A phase relationship is identified between sequential edge localized modes (ELMs) occurrence times in a set of H-mode tokamak plasmas to the voltage measured in full flux azimuthal loops in the divertor region. We focus on plasmas in the Joint European Torus where a steady H-mode is sustained over several seconds, during which ELMs are observed in the Be II emission at the divertor. The ELMs analysed arise from intrinsic ELMing, in that there is no deliberate intent to control the ELMing process by external means. We use ELM timings derived from the Be II signal to perform direct time domain analysis of the full flux loop VLD2 and VLD3 signals, which provide a high cadence global measurement proportional to the voltage induced by changes in poloidal magnetic flux. Specifically, we examine how the time interval between pairs of successive ELMs is linked to the time-evolving phase of the full flux loop signals. Each ELM produces a clear early pulse in the full flux loop signals, whose peak time is used to condition our analysis. The arrival time of the following ELM, relative to this pulse, is found to fall into one of two categories: (i) prompt ELMs, which are directly paced by the initial response seen in the flux loop signals; and (ii) all other ELMs, which occur after the initial response of the full flux loop signals has decayed in amplitude. The times at which ELMs in category (ii) occur, relative to the first ELM of the pair, are clustered at times when the instantaneous phase of the full flux loop signal is close to its value at the time of the first ELM
    corecore